

# Surgical site infection in Australia: A systematic review of the incidence and economic burden

Kristina Coleman<sup>1</sup>, Jonathan T Tan<sup>1</sup>, Sarah Norris<sup>1</sup>, Kristy Hardy<sup>2</sup>, Thorsten Berg<sup>2,3</sup>, Laurent Metz<sup>3</sup>

<sup>1</sup>Health Technology Analysts Pty Ltd, Sydney, Australia, <sup>2</sup>Johnson and Johnson Medical Australia/New Zealand, <sup>3</sup>Johnson and Johnson Medical Asia-Pacific

www.htanalysts.com

#### introduction

- A surgical site infection (SSI) is a type of hospital-acquired infection (HAI) that arises following surgery and is specifically related to the surgical site.
- It is estimated that SSIs account for between 10-30% of all HAIs.<sup>1</sup>
- SSIs are associated with substantial economic costs, mainly attributable to the extended length of stay in hospital. Indirect costs, such as additional treatment and loss of productivity by the patient, further add to the burden of SSI.

## objective

 The aim of this systematic literature review is to collate and describe studies examining the epidemiological and economic burden of SSI in Australia.

## methods

- A literature search of epidemiological and economic studies conducted between 1995-2010 in the EMBASE and Medline databases was performed.
- The search strategy included SSI-related terms, epidemiological and economic terms. The literature search identified 1382 potentially relevant citations.
- Citations were reviewed to identify relevant publications. Studies were excluded if they did not describe the rate, incidence, prevalence or cost of SSI. Studies which describe an intervention and studies not conducted in Australia were also excluded.

#### results

## **Study characteristics**

- Following detailed assessment of these citations, a total of 32 citations were included in this review.
- Studies were predominantly conducted in public hospitals in the states of **NSW, QLD, VIC and WA in Australia**
- Of the studies included, 34% were prospective cohorts, while 38% were case series. The remaining studies comprised cross-sectional surveys and retrospective cohorts.
- Most of the studies employed the Centres for Disease Control (CDC) definition of an SSI, while a few studies used their own clinical definition. The majority of studies assessed SSI during the pre-discharge period, however a few studies assessed SSI during the post-discharge period only (typically for a month following discharge).

# Incidence

- Six studies reported an overall SSI incidence of 2-10% for all surgical procedures.<sup>2-7</sup>
- The incidence of SSI varied more widely across different surgical procedures. Higher incidences were generally observed for gastrointestinal  $(3-13\%)^{3,4,8}$  and cardiothoracic surgery  $(1-18\%)^{4,6,9-14}$ , while the incidence of SSI after orthopaedic surgery appeared lower (1-8%).<sup>2-6,15,16</sup>
- Five studies examined the incidence of SSI pre- and post-discharge. 3,5,8,17,18 As shown in Table 1, a substantial portion of SSIs were detected after discharge from hospital.

| Source                     | Procedure                        | Study sample size | Incidence | % post-discharge |  |
|----------------------------|----------------------------------|-------------------|-----------|------------------|--|
| Orthopaedic surge          | ry                               |                   |           |                  |  |
| Mitchell 1999              | All orthopaedic procedures       | 245               | 6.1%      | 33%              |  |
| Kent 2001                  | Hip replacement                  | 358               | 4.7%      | 47%              |  |
| Kent 2001                  | Knee replacement                 | 225               | 5.8%      | 62%              |  |
| Gynaecological sur         | gery                             |                   |           |                  |  |
| Mitchell 1999              | All elective procedures          | 209               | 10.0%     | 72%              |  |
| Kent 2001                  | Caesarean                        | 116               | 3.4%      | 47%              |  |
| Noy 2002                   | Caesarean                        | 247               | 17.0%     | 82%              |  |
| Kent 2001                  | Hysterectomy                     | 131               | 2.3%      | 35%              |  |
| <b>Gastrointestinal su</b> | rgery                            |                   |           |                  |  |
| Kent 2001                  | Cholecystectomy                  | 180               | 10.0%     | 72%              |  |
| Platell 1997               | Colorectal surgery               | 553               | 11.6%     | 33%              |  |
| Cardiothoracic surg        | gery                             |                   |           |                  |  |
| Hall 1998                  | Cardiac surgery                  | 1000              | 5.9%      | 64%              |  |
| Mitchell 1999              | Cardiothoracic surgery 642 12.8% |                   | 12.8%     | 78%              |  |
| Mitchell 1999              | Vascular surgery                 | 59                | 6.8%      | 75%              |  |

# **Risk factors**

- The incidence of SSI also varied in the presence of certain risk factors.
- Table 2 shows SSI incidence by National Nosocomial Infection Surveillance (NNIS) risk score.<sup>3,6,19,20,21</sup>
- Specific patient and procedure associated risk factors were identified through multivariate analysis. Several factors (e.g. diabetes, obesity, surgery duration) showed consistent association with SSI risk. These are presented in <u>Table 3</u>.9,13,14,19,22,23.

Table 2: Association of NNIS risk scores with surgical site infection incidence

| Source          |               |                         | NNIS score          |                     |                     |               |
|-----------------|---------------|-------------------------|---------------------|---------------------|---------------------|---------------|
|                 | Procedure     | Follow-up               | 0                   | 1                   | 2                   | 3             |
| Kent 2001       | Any procedure | Pre- and post-discharge | 4.5%<br>(39/874)    | 6.9%<br>(27/391)    | 20%<br>(10/50)      | 50%<br>(1/2)  |
| Morton 2008     | Any procedure | Pre-discharge only      | 0.1%<br>(321/36860) | 1.7%<br>(338/19589) |                     | 0%<br>(0/0)   |
| Harrington 2004 | CABG          | Pre-discharge only      | 0%<br>(0/33)        | 7.0%<br>(242/3438)  | 10.3%<br>(103/1002) | 100%<br>(1/1) |
| Russo 2002      | CABG          | Pre-discharge only      | 0%<br>(0/34)        | 8.0%<br>(164/2045)  | 13.2%<br>(35/266)   | 0%<br>(0/0)   |
| Russo 2005      | CABG          | Pre-discharge only      | 2.9%<br>(1/359)     | 4.4%<br>(111/2500)  | 6.0%<br>(52/863)    | 0%<br>(0/0)   |

Abbreviations: CABG, , Coronary artery bypass graft.

#### results cont.

Table 3: Risk factors associated with surgical site infection

| Source           | Procedure       | Follow-up               | Risk variable      | Risk estimate (95% CI) | p-value |  |  |
|------------------|-----------------|-------------------------|--------------------|------------------------|---------|--|--|
| Type 2 diabetes  |                 |                         |                    |                        |         |  |  |
| Robinson 2007    | Cardiac surgery | Pre- and post-discharge | Diabetes           | OR 2.5 (1.79, 3.47)    | <0.05   |  |  |
| Deng 2004        | CABG            | Not reported            | Diabetes           | OR 2.7 (1.09, 6.74)    | <0.05   |  |  |
| Friedman 2007    | CABG            | Pre-discharge only      | Diabetes           | OR 1.6 (1.3, 2.1)      | <0.05   |  |  |
| Harrington 2004  | CABG            | Pre-discharge only      | Diabetes           | RR 1.6 (1.2, 2.1)      | >0.001  |  |  |
| Spelman 2000     | CABG            | Pre-discharge only      | Diabetes           | RR 2.09 (1.2, 3.63)    | 0.009   |  |  |
| Weight           |                 |                         |                    |                        |         |  |  |
| Friedman 2007    | CABG            | Pre-discharge only      | Overweight         | OR 1.2 (0.8, 1.6)      | 0.49    |  |  |
| Friedman 2007    | CABG            | Pre-discharge only      | Obese              | OR 1.5 (1.0, 2.2)      | 0.04    |  |  |
| Friedman 2007    | CABG            | Pre-discharge only      | Morbidly obese     | OR 2.6 (1.7, 4.1)      | <0.001  |  |  |
| Harrington 2004  | CABG            | Pre-discharge only      | Obese              | RR 1.8 (1.4, 2.3)      | <0.001  |  |  |
| Robinson 2007    | Cardiac surgery | Pre- and post discharge | Overweight & Obese | OR 1.72 (1.10, 2.68)   | 0.02    |  |  |
| Spelman 2000     | CABG            | Pre-discharge only      | Obese              | RR 2.82 (1.58, 5.03)   | 0.001   |  |  |
| Surgery duration |                 |                         |                    |                        |         |  |  |
| Clements 2007    | 13 procedures   | Pre- and post discharge | >2-3 hours         | OR 1.31 (1.06, 1.62)   | 0.01    |  |  |
| Clements 2007    | 13 procedures   | Pre- and post discharge | >3-5 hours         | OR 1.55 (1.17, 2.06)   | 0.002   |  |  |
| Clements 2007    | 13 procedures   | Pre- and post discharge | > 5 hours          | OR 3.01 (1.97, 4.61)   | <0.001  |  |  |

Abbreviations: CABG, Coronary artery bypass graft; OR, Odds ratio; RR, Relative risk.

#### **Pathogens**

 As shown in <u>Table 4</u>, the most common pathogen associated with SSIs in Australia was Staphylococcus aureus, with approximately equal proportions being methicillin-resistant and methicillin-sensitive. 14,19,24.

Table 4: Pathogen associated with surgical site infections in Australia

| Carras          | Number of  | Staphyloco | ccus aureus | Pseudomonas | Mixed /      | Othors |  |
|-----------------|------------|------------|-------------|-------------|--------------|--------|--|
| Source          | infections | MRSA       | MSSA        | aeruginosa  | Entericflora | Others |  |
| Chen 2008       | 31         | 23%        | 39%         | 0%          | 13%          | 25%    |  |
| Harrington 2004 | 296        | 32%        | 24%         | 0%          | 13%          | 31%    |  |
| Spelman 2000    | 61         | 32%        | 27%         | 5%          | 18%          | 18%    |  |

Abbreviations: MRSA, Methicillin-resistance Staphylococcus aureus; MSSA, Methicillin-sensitive Staphylococcus aureus.

#### **Economic burden**

- As shown in <u>Table 5</u>, SSIs were associated with increased length of stay in hospital and increased treatment cost.8,25-27
- The study by Graves 2009 estimated that over 21,000 cases of SSI occur annually, which result in the loss of 53,536 hospital bed-days, representing an economic burden of over AU\$53 million.
- The economic burden of SSI was examined by Graves 2008. It was estimated that 31% of the cost was related to hospital stay, and 14% to post-discharge healthcare; while the remaining costs were attributable to production losses by the patient (20%) and informal carer (35%).

Table 5: Franchic costs associated with surgical site infection in Australia

| Table 5: Economic costs associated with surgical site infection in Australia |                    |                                                             |                                                           |  |  |
|------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------|-----------------------------------------------------------|--|--|
| Study                                                                        | Procedure          | Additional cost associated with SSI                         | Extended hospital stay associated with SSI                |  |  |
| Graves 2009                                                                  | All procedures     | AU\$53 million / year                                       | Loss of 53,536 bed-days in hospitals / year               |  |  |
| Graves 2008                                                                  | All procedures     | Pre-discharge SSI: AU\$2,047<br>Post-discharge SSI: AU\$725 | 17.4 additional days                                      |  |  |
| Jenney 2001                                                                  | CABG               | AU\$12,419 per case of SSI                                  | 1.3 additional days in ICU<br>6.1 additional days in Ward |  |  |
| Platell 1997                                                                 | Colorectal surgery |                                                             | 9 additional days                                         |  |  |

Abbreviations: CABG, Coronary artery bypass graft; ICU, Intensive care unit.

# discussion

- The findings of this systematic review suggest that SSI represents a significant burden to patients and the healthcare system in Australia. The overall incidence of SSI was approximately 5-10%. Surgery involving the gastrointestinal tract and cardiovascular system were associated with a higher rates of SSI.
- The results show that a large portion of SSIs often occur after discharge from hospital. This in turn has the potential to increase the economic burden to community health services and the families of patients.

# conclusion

- o SSI represents a substantial burden on the healthcare system and patients, mainly attributable to the extended length of stay in hospital and additional cost of treatment required.
- Consequently, strategies and interventions aimed at reducing the incidence of SSIs could provide cost-savings and improve the efficiency of the healthcare system.

# source of funding

Johnson and Johnson Medical, Asia-Pacific

# references

- 1. Leaper DJ, et al (2004 Dec) Int Wound 1(4):247-273. 2. Kable A,et al (2004) ANZ J Surg 74(3):92-97.
- 3. Kent P, et al (2001) ANZ J Surg 71(10):583-589. 4. McLaws ML and Taylor PC (2003) The Journal of Hospital Infection
- 53(4):259-267. 5. Mitchell DH, et al (1999) Aust New Zealand J Surg 69(2):117-120.
- 6. Morton AP, et al (2008) Infect Control Hosp Epidemiol 29(8):695-701. 7. Myles PS, et al (2002) *Anesthesiology* 97(4):842-847.
- 8. Platell C (1997) J Qual Clin Pract 17(4):203-207. 9. Deng Y, et al (2004) Asian Cardiovasc Thorac Ann 12(3):227-232.
- 10. Hall JC and Hall JL (2000) J Qual Clin Pract 20(2-3):60-62.
- 11. Hassen TA and Fitridge RA (2005) ANZ J Surg 75(11):967-971. 12. Hata M, et al (2002) Ann Thorac Cardiovasc Surg 8(2):97-101.
- 14. Spelman DW, et al (2000) Aust New Zealand J Surg 70(1):47-51. **15.** Curtis M, et al (2004) *J Hosp Infect* 57(3):189-193.
- **16.** Thomas C, et al (2004) *J Hosp Infect* 57(1):25-30.
- **17.** Hall JC (1998) *J Qual Clin Pract* 18(4):227-231.
- 18. Noy D and Creedy D (2002) Am J Infect Control 30(7):417-424.
- 19. Harrington G, et al (2004) Infect Control Hosp Epidemiol 25(6):472-476.
- 20. Russo PL and Spelman DW (2002) Infect Control Hosp Epidemiol 23(7):372-376. 21. Russo PL, et al (2005) Aust N Z J Surg 29(3):244-248.
  - **22.** Clements ACA, et al (2007) *J Hosp Infect* 66(2):148-155. 23. Friedman ND, et al (2007) Infect Control Hosp Epidemiol 28(10):1162-1168.
  - **24.** Chen Y, et al (2008) *ANZ J Surg* 78(5):333-336. **25.** Graves N, et al (2008) *J Hosp Infect* 69(3):274-282.
- **26.** Graves N, et a (2009) *Healthc Infect* 14(3):81-88. 13. Robinson PJ, et al (2007) Interact Cardiovasc Thorac Surg 6(2):167-171. 27. Jenney AWJ, et al (2001) ANZ J Surg 71(11):662-664.