

CIDEX[®] OPA Solution Effectiveness Against Disease-Causing Microbes

MAIN POINTS

- Five studies have evaluated the effectiveness of CIDEX® OPA Solution against:
 - More than 200 strains of bacteria, including antibiotic-resistant strains
 - Mycobacteria
 - Spore-forming bacteria
 - Viruses
 - Fungi¹⁻⁵
- CIDEX[®] OPA Solution kills everything tested except spores very quickly, even under rigorous testing.¹⁻⁵
- CIDEX[®] OPA Solution remains effective in the presence of blood and organic matter.^{2, 3}

PURPOSE

The purpose of this document is to provide a review of recent scientific findings on the killing efficacy of CIDEX[®] *ortho*-phthalaldehyde (OPA) Solution. Five research studies have been reviewed and summarized. Several additional sources were used to provide background information.

INTRODUCTION AND BACKGROUND

Healthcare-Associated Infections Every year, more than 2 million healthcareassociated infections occur in the U.S.⁶ These infections result in approximately 90,000 deaths each year, and are one of the most frequent "adverse medical events" in the U.S.^{6,7}

"A recent comprehensive review of the medical literature suggests that transmission of infection resulting from gastrointestinal endoscopy is an extremely rare event, and has invariably been associated with a breach in cleaning protocols or defective equipment."⁸

CIDEX® OPA SOLUTION

CIDEX® OPA Solution is a high-level disinfectant (HLD) with low odor and is highly compatible with medical materials.^{1, 2, 9} It was developed by Johnson & Johnson Medical Inc. and cleared for use in the U.S. in 1999.⁹ Scientists have studied the effectiveness of CIDEX® OPA Solution and have found it to be effective at killing a broad spectrum of bacteria and other disease-causing organisms.^{1-5, 9-11}

STUDY METHODS

While the exact testing methods varied between studies, the same general steps were taken in all five research studies.

- 1. Disease-causing microorganisms (microbes) were obtained either from stock laboratory supplies or from hospitalized patients.
- 2. Microbes were grown.
- Microbes on inoculated carriers or in suspension were exposed to CIDEX[®] OPA Solution for a set amount of time.
- Tests were performed to measure microbe survival after exposure to CIDEX[®] OPA Solution.¹⁻⁵

LOG₁₀ REDUCTIONS

The effectiveness of HLDs is often measured in \log_{10} reduction factors.^{1, 3-5}

To illustrate the concept of log₁₀ reduction factors, imagine that there are 5 million bacteria contaminating a medical instrument.

- If disinfected with an HLD with a log₁₀ reduction factor of 5.0, 50 bacteria will remain
- If disinfected with an HLD with a log₁₀ reduction factor of 4.0, 500 bacteria will remain
- If disinfected with an HLD with a log₁₀ reduction factor of 3.0, 5,000 bacteria will remain

In other words, a one-unit increase on the log₁₀ scale indicates an increase in killing effectiveness of 10 times.

CIDEX[®] OPA Solution Effectiveness Against Vegetative Bacteria

The effectiveness of CIDEX[®] OPA Solution has been tested against many vegetative bacteria. See Table 1.

Table 1. Vegetative Bacteria Killed by CIDEX[®] OPA Solution

Acinetobacter baumanii Acinetobacter species unspecified Enterobacter cloacae isolated from a patient Enterobacteriace isolated from a patient Enterococcus faecalis - Laboratory strain - Isolates from patients Escherichia coli - 2 laboratory strains - Isolates from patients Helicobacter pylori - 2 laboratory strains Klebsiella pneumoniae Proteus mirabilis Pseudomonas aeruginosa - 2 laboratory strains - Isolates from patients Serratia marcescens Staphylococcus species unspecified Staphylococcus aureus -2 laboratory strains - Isolates from patients Stentrophomonas maltophilia Streptococcus species unspecified Staphylococcus epidermidis Xanthomonas maltophilia

In three studies, CIDEX[®] OPA Solution was highly bactericidal against all vegetative, non-spore forming microbes.^{1, 2, 4}

In two studies by Herruzo-Cabrera, both laboratory stock strains and patient-isolated strains of bacteria were utilized, and CIDEX[®] OPA Solution was able to reduce the bacterial load by greater than 10,000 times (log₁₀ reduction factors of 4.63 and 4.7) within 10 minutes.^{1,4}

According to Akamatsu, CIDEX[®] OPA Solution eliminated all viable cells for 11 different strains of bacteria in 15 seconds or less.² In addition, CIDEX[®] OPA Solution remained bactericidal and fastacting in the presence of human serum for all of the 11 organisms tested.²

Another study was designed to represent a "worst case scenario" by using:

- Rough-surfaced instruments.
- Inoculating the instrument with both lab and freshly isolated strains of bacteria and fungi from ICU patients.
 - Over 200 strains were tested, including 66 strains of *P. aeruginosa*, some of which were resistant or multiple drug-resistant
 - *P. aeruginosa* can cause respiratory infections in patients who have endoscopy procedures, and it can often survive highlevel disinfection.¹

CIDEX[®] OPA Solution easily killed all of the microbes tested with the exception of *P. aeruginosa*. While OPA was not able to kill all of the *P. aeruginosa* strains, it was still able to effectively kill 77% of 44 clinical isolates after 10 minutes of exposure.¹

When CIDEX® OPA Solution was compared to other HLDs, CIDEX® OPA Solution was often faster and more effective.
In one study, CIDEX® OPA Solution was twice as fast as glutaraldehyde (GTA) at eliminating 11 strains of bacteria.²
In another study, CIDEX® OPA Solution killed a higher percentage of microbes than Perasafe (92% vs. 74%).⁴ (see Figure 1)

Percent of 54 Microbial Species Completely Killed by HLD Sorce: Herruzo-Cabrera et al. (2006)

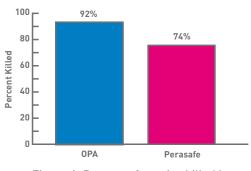


Figure 1. Percent of species killed by CIDEX[®] OPA Solution and Perasafe

"OPA, at a concentration of 0.55%, shows excellent mycobactericidal activity within 10 min...In comparison, 2% GTA requires at least 20 min to be effective (this time period is even longer for some mycobacteria, e.g. *M. avium intracellulare*). These findings would vindicate substitution of 2% GTA with 0.55%"1

CIDEX[®] OPA Solution Effectiveness Against Mycobacteria

Figure 2. Close-up of a *Mycobacterium tuberculosis* arowth Image Source: Public Health Image Library

Mycobacteria cause healthcare-related infections.³ *M. tuberculosis* infections can occur from improperly disinfected endoscopes and bronchoscopes. In addition, *M. chelonae* has been implicated in hospital-acquired infections.³ CIDEX[®] OPA Solution has been shown to kill

mycobacteria in multiple studies.^{1, 3, 4}

- In one study:
 - CIDEX[®] OPA Solution reduced the number of mycobacteria by a factor greater than 10,000 (log₁₀ reduction factor of 4.3) after 10 minutes of exposure.4
 - CIDEX[®] OPA Solution was more effective at killing mycobacteria than Perasafe.⁴

• In another study, CIDEX[®] OPA Solution was shown to be faster acting against mycobacteria than GTA.³ (See Figure 3)

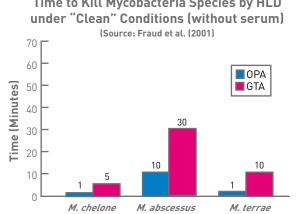


Figure 3. Killing time of Mycobacteria by CIDEX® OPA Solution and GTA in "clean" conditions

The addition of serum did not affect the efficacy of CIDEX® OPA Solution against the tested mycobacteria.^{2,3} It did, however, increase the amount of time required for GTA disinfection, doubling the required time for two of the species.³ (See Figure 4).

Time to Kill Mycobacteria Species by HLD

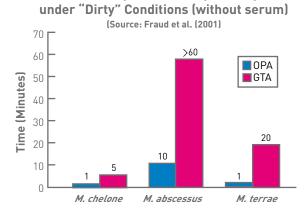


Figure 4. Killing time of Mycobacteria by CIDEX[®] OPA Solution and GTA in "dirty" conditions

"Results showed that 0.5% acidic and alkaline OPA were rapidly mycobactericidal, under both 'clean' and 'dirty' conditions, and more importantly were active against GTAresistant strains."³

Time to Kill Mycobacteria Species by HLD

The effectiveness of CIDEX[®] OPA Solution has been tested against several mycobacteria.

Table 2. Mycobacteria Killed by CIDEX® OPA Solution

CIDEX® OPA Solution can also kill GTA-resistant mycobacteria, such as *M. chelonae* (Epping) and *M. chelonae* (Harefield).³ These organisms were eliminated by CIDEX® OPA Solution within two minutes or less in both clean and dirty conditions.³

CIDEX[®] OPA Solution Effectiveness Against Spores and Spore-Forming Bacteria

Figure 5. An electron micrograph of *Bacillus subtilis* cells

Because HLDs are not required to eliminate spores (only sterilization completely eliminates spores⁹),there are limited data about the efficacy of CIDEX[®] OPA Solution against them. The effectiveness of CIDEX[®] OPA Solution has been tested against the two spore-forming bacteria.

Table 3. Spores Reduced by CIDEX[®] OPA Solution

Bacillus subtilis Bacillus atrophaeus

According to researchers, CIDEX[®] OPA Solution has shown effectiveness in reducing the number of *Bacillus atrophaeus* and *B. subtilis* spores.^{4,9}

Currently, there is great concern about hospitalacquired *Clostridium difficile* (or *"C. diff"* as it is called) infections. *C. difficile* spores are quite sensitive to standard disinfection processes and are eliminated with relatively short times of exposure to HLDs, such as CIDEX[®] OPA Solution.¹¹

CIDEX[®] OPA Solution Effectiveness Against Viruses

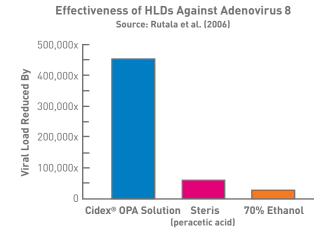
Scientists have tested and found CIDEX® OPA Solution to be virucidal for many viruses.¹⁰ Independent researchers have also tested the effectiveness of CIDEX® OPA on Hepatitis B and Adenovirus 8.^{2, 5}

Table 4. Viruses Destroyed by CIDEX[®] OPA Solution

Adenovirus 2
Adenovirus 8
Coxsackie Type B-3
Cytomegalovirus
Hepatitis B (HBV)
Herpes Simplex 1 and 2
HIV-1
Human Coronavirus
Influenza Type A (Hong Kong)
Polio 1
Rhinovirus Type 42
Vaccinia (smallpox)

Hepatitis B (HBV)

In one study, scientists used radioimmunoassay to determine if the HBV remained infectious after exposure to CIDEX® OPA Solution.² After 30 seconds, CIDEX® OPA Solution had reduced the infectivity of HBV below the threshold value for the test.²


"The World Health Organization recommends hypochlorous acid and GTA as an effective disinfectant against hepatitis B virus; our results show that OPA is also an effective disinfectant against hepatitis B virus."²

Adenovirus 8

Adenovirus 8 is a very resilient virus and can persist in the environment on hard surfaces for more than 30 days.⁵ It is a common cause of hospital-acquired eye infections and can be spread by:

- Contact with contaminated medical equipment
- Direct person-to-person contact
- Airborne droplets

CIDEX® OPA Solution was able to reduce the viral load of Adenovirus 8 to safe levels after one minute of exposure, even in the presence of serum. CIDEX® OPA Solution was also more effective on Adenovirus 8 after exposure for five minutes than all other germicides tested, including peracetic acid and 70% ethanol.⁵ (See Figure 6).

CIDEX[®] OPA Solution Effectiveness Against Fungi

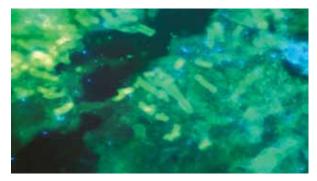


Figure 7. An electron micrograph of *Candida albicans* Image Source: Public Health Image Library

The effectiveness of CIDEX[®] OPA Solution has been tested against several fungi.

Table 5. Fungi Killed by CIDEX® OPA Solution

Candida albicans	
Mucor racemosus	
Rhizopus nigricans	
Aspergillus niger	
A. terreus	

The results of two studies show CIDEX® OPA Solution as an effective and fast-acting fungicide.^{1, 2}

Herruzo-Cabrera et al. tested the effect of CIDEX[®] OPA Solution on eight different isolates of *Candida albicans.*¹ After 10 minutes of exposure, CIDEX[®] OPA Solution reduced the number of organisms by an average of nearly 20,000 times (log₁₀ reduction factor of 4.3).¹

Akamatsu et al. tested the fungicidal activity of CIDEX® OPA Solution and GTA against five fungi.² CIDEX® OPA Solution was at least twice as fast at killing the fungi tested as GTA.² (See Figure 8)

Killing Time of OPA and GTA for Fungi in the Presence of Serum Source: Akamatsu et al. (2005)

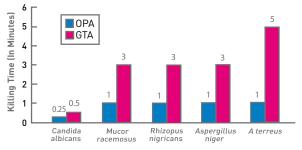


Figure 8. Fungal killing times by CIDEX[®] OPA and GTA in the presence of serum

Discussion and Conclusions

CIDEX® OPA Solution has demonstrated high levels of bactericidal, virucidal, and fungicidal activity in multiple studies against a wide range of organisms.^{1-5, 9}

Clinically isolated bacteria should be used when determining the effectiveness of an HLD because of their increased resistance to HLDs.¹ When CIDEX[®] OPA Solution was used against the clinically isolated strains, it was effective against the majority of the tested organisms, even under "worst case" conditions.¹

There have been limited published studies of the effectiveness of CIDEX® OPA Solution against viruses. In some cases, it is impossible to do direct virucidal testing because the viruses currently cannot be grown in a laboratory setting (such as human papillomavirus, and Norwalk and Norwalk-like viruses).⁹ However, some of the most concerning viruses (such as hepatitis B and C and HIV) are very fragile and are easily destroyed by all HLDs.¹¹ CIDEX® OPA Solution was very effective at eliminating Adenovirus 8, a very hardy and persistent virus.⁵

CIDEX[®] OPA Solution shows fast killing action against microbes that are resistant to GTA, in addition to having other advantages over GTA.³

"CIDEX® OPA Solution has several potential advantages compared to Glutaraldehyde. It has excellent stability over a wide pH range (pH 3-9), is not a known irritant to the eyes and nasal passages, does not require exposure monitoring, has a barely perceptible odor, and requires no activation." ⁹

Post-gastrointestinal endoscope infection occurs very rarely, and has been highly correlated with a break in disinfection procedures or faulty equipment.⁸ The scientific evidence shows that CIDEX® OPA Solution is an easy to use HLD and is very effective.^{1, 2, 9}

Although the data used in these papers suggest that CIDEX® OPA Solution is effective with exposure conditions different than the cleared claims, CIDEX® OPA Solution should always be used consistent with its Direction for Use.

References

- 1. Herruzo-Cabrera R, Vizcaino-Alcaide MJ, Fernandez-Acenero MJ. The influence of laboratory adaptation on test strains, such as Pseudomonas aeruginosa, in the evaluation of the antimicrobial efficacy of ortho-phthalaldehyde. *J Hosp Infect.* Jul 2004;57(3):217-222.
- 2. Akamatsu T, Minemoto M, Uyeda M. Evaluation of the antimicrobial activity and materials compatibility of orthophthalaldehyde as a high-level disinfectant. *J Int Med Res.* Mar-Apr 2005;33(2):178-187.
- 3. Fraud S, Maillard JY, Russell AD. Comparison of the mycobactericidal activity of ortho-phthalaldehyde, glutaraldehyde and other dialdehydes by a quantitative suspension test. *J Hosp Infect.* Jul 2001;48(3):214-221.
- 4. Herruzo-Cabrera R, Vizcaino-Alcaide MJ, Rodriguez J. Comparison of the microbicidal efficacy on germ carriers of several tertiary amine compounds with ortho-phthalaldehyde and Perasafe. *J Hosp Infect.* May 2006;63(1):73-78.
- Rutala WA, Peacock JE, Gergen MF, Sobsey MD, Weber DJ. Efficacy of hospital germicides against adenovirus 8, a common cause of epidemic keratoconjunctivitis in health care facilities. *Antimicrob Agents Chemother*. Apr 2006;50(4):1419-1424.
- Joint Commission Resources Inc., Joint Commission on Accreditation of Healthcare Organizations. *Meeting JCAHO's infection control requirements: a priority focus area.* Oakbrook Terrace, IL: Joint Commission Resources; 2004.
- 7. Klevens RM, Edwards JR, Richards CL, Jr., et al. Estimating health care-associated infections and deaths in U.S. hospitals, 2002. *Public Health Rep.* Mar-Apr 2007;122[2]:160-166.
- 8. Nelson DB. Recent advances in epidemiology and prevention of gastrointestinal endoscopy related infections. *Curr Opin Infect Dis.* Aug 2005;18(4):326-330.
- Rutala WA, Weber DJ. Disinfection and Sterilization in Healthcare Facilities. <u>http://www.unc.edu/depts/</u> <u>spice/dis/DisinfectionAndSterilizationInHealthcare.</u> <u>pdf</u>. Accessed August 8, 2007.
- Advanced Sterilization Products. CIDEX[®] OPA High Level Disinfecting Solution Technical Information. <u>http://sterrad.com/Products & Services/CIDEX/</u> <u>CIDEX_OPA/Files/opa_white_paper.pdf</u>. Accessed October 3, 2007.
- 11. Nelson DB. Infection control during gastrointestinal endoscopy. *Can J Gastroenterol.* Jan 2007;21(1):13-15.

ADVANCED STERILIZATION PRODUCTS

Division of Ethicon, Inc. a **Johnson Johnson** company